2022

Time - 3 hours

Full Marks - 80

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

Answer <u>all</u> questions by choosing correct option.

 $[1 \times 12]$

- (a) Which of the following is true?
 - (i) Finite union of open sets is open
 - (ii) Arbitrary union of open sets is open
 - (iii) Both (i) and (ii)
- (iv) None of the above
- (b) The $S = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots \right\} \cup \{0\}$ is
 - (i) Open

(ii) Closed

(iii) Bounded

(iv) Both (ii) and (iii)

- (c) Let (x_n) be a Cauchy sequence. Then the sequence is
 - Bounded (i)

- (ii) Increasing
- (iii) Decreasing
- (iv) All of the above
- (d) Let (x_n) be a cauchy sequence. If the sequence is bounded, then
- $\lim x_n = \sup x_n \qquad (ii) \quad \lim x_n = \inf x_n$

 - (iii) Both (i) and (ii) (iv) None of the above
- (e) Let $f: X \to R$ be continuous on X. Which of the following is true?
 - If O is an open subset of X, then f(O) is an open subset in Y.
 - If O is an open subset of Y, then f⁻¹(O) is an open subset in X.
 - (iii) If F is a closed subset of X, then f(F) is a closed subset in Y.
 - (iv) All of the above
- Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by (f)

$$f(x) = \begin{cases} 1 & \text{,} & \text{x is rational} \\ 0 & \text{,} & \text{x is irrational.} \end{cases}$$

Then which of the following is true?

- (i) f is continuous only at 0
- (ii) f is continuous at every rationals
- (iii) f is continuous at every irrationals
- (iv) f is nowhere continuous.
- (g) Let $f(x) = x \sin \frac{1}{x}$, $(x \ne 0)$ and f(0) = 0. Which of the following is true?
 - (i) f is continuous at 0
 - (ii) f is continuous everywhere
 - (iii) f is not differentiable at 0
 - (iv) All of the above
- (h) State Caratheodory's Theorem.
- (i) Give an example of a bounded sequence which is not Cauchy.
- (j) Give an example of a set which is bounded above but unbounded below
- (k) Give an example of a sequence which is convergent but neither monotonically increasing nor decreasing.
- (I) Find the interior points of the set $(0, 1) \cup \{2, 3\}$.

GROUP - B

2. Answer any eight questions.

 $[2 \times 8]$

- (a) State Weierstress-Completeness Principle.
- (b) Define the term limit point of a set.
- (c) Is the set $F = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots \right\}$ a closed set in R? Justify.
- (d) State Bolzano-Weierstrass Theorem for sequences.
- (e) Show that $X_n = (\frac{1}{n})_{n \in \mathbb{N}}$ is a Cauchy sequence.
- (f) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{3^n}$.
- (g) State the location of roots theorem.
- (h) If $f: X \to \mathbb{R}$ is continuous on X, is necessarily f uniformly continuous on X? Justify your answer.
- (i) State Mean-Value Theorem.
- (j) Test the differentiability of $f(x) = x |x|^2$ at origin.

GROUP - C

3. Answer any eight questions.

 $[3 \times 8]$

(a) Is every bounded above subset of an ordered field F has least upper bound? Justify your answer.

- (b) Show that every finite subset of R is a closed set.
- (c) If $0 \le |a-b| < \varepsilon$, for every ε . Then show that a = b.
- (d) Is every Cauchy sequence bounded? Justify your answer.
- (e) If $x_n \to l$ as $n \to \infty$, then show that $|x_n| \to |l|$.
- (f) Let f: X → R is differentiable at a point a ∈ X. Is necessarily f continuous at a ? Justify your answer. What about the converse ?
- (g) Test the continuity of the function $\sin \frac{1}{x}$ at 0.
- (h) Is necessarily the function $f:(0, 1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ uniformly continuous? Justify.
- (i) Show that $\frac{x}{1+x} < \log(1+x) < x, \forall x > 0$.
- (j) Let f be differentiable on (a, b). If $f'(x) \ge 0, \forall x \in (a,b)$. Then show that f is monotonically increasing.

GROUP - D

4. Answer any four questions.

 $[7 \times 4]$

(a) State and prove Archimedean Principle. Use Archimedean Principle to show that $\{x \in \mathbb{R} : x < 0\}$.

- (b) Prove that a subset of **R** is closed if and only if contains all its limit points.
- (c) Show that a bounded sequence has a convergent subsequence.
- (d) State and prove Leibnitz Alternating Series Test.
- (e) Show that the image of a closed bounded set under a continuous function is closed and bounded.
- (f) Let S be a closed and bounded subset of R. If $f: S \to R$ is continuous on S, then prove that f is uniformly continuous on S.
- (g) State and prove Rolle's Theorem. Use Rolle's Theorem to show that the equation $10x^4 6x + 1 = 0$ has a root between 0 and 1. [5 + 2]